Tikhonov Replacement Functionals for Iteratively Solving Nonlinear Operator Equations∗
نویسندگان
چکیده
We shall be concerned with the construction of Tikhonov–based iteration schemes for solving nonlinear operator equations. In particular, we are interested in algorithms for the computation of a minimizer of the Tikhonov functional. To this end, we introduce a replacement functional, that has much better properties than the classical Tikhonov functional with nonlinear operator. Namely, the replacement functional is globally convex and can be effectively minimized by a fixed point iteration. Based on the minimizers of the replacement functional, we introduce an iterative algorithm that converges towards a critical point of the Tikhonov functional, and under additional assumptions to the nonlinear operator F , to a global minimizer. Combining our iterative strategy with an appropriate parameter selection rule, we obtain convergence and convergence rates. The performance of the resulting numerical scheme is demonstrated by solving the nonlinear inverse SPECT (Single Photon Emission Computerized Tomography) problem.
منابع مشابه
A generalized conditional gradient method for nonlinear operator equations
The intention of this paper is to show the applicability of a generalized conditional gradient method for the minimization of Tikhonov-type functionals, which occur in the regularization of nonlinear inverse problems with sparsity constraints. We consider functionals of Tikhonov type where the usual quadratic penalty term is replaced by the pth power of a weighted p-norm. First of all, we analy...
متن کاملJu n 20 09 A new approach to source conditions in regularization with general residual term
This paper addresses Tikhonov like regularization methods with convex penalty functionals for solving nonlinear ill-posed operator equations formulated in Banach or, more general, topological spaces. We present an approach for proving convergence rates which combines advantages of approximate source conditions and variational inequalities. Precisely, our technique provides both a wide range of ...
متن کاملSolving a nonlinear inverse system of Burgers equations
By applying finite difference formula to time discretization and the cubic B-splines for spatial variable, a numerical method for solving the inverse system of Burgers equations is presented. Also, the convergence analysis and stability for this problem are investigated and the order of convergence is obtained. By using two test problems, the accuracy of presented method is verified. Additional...
متن کاملMinimization of Tikhonov Functionals in Banach Spaces
Tikhonov functionals are known to be well suited for obtaining regularized solutions of linear operator equations. We analyze two iterative methods for finding the minimizer of norm-based Tikhonov functionals in Banach spaces. One is the steepest descent method, whereby the iterations are directly carried out in the underlying space, and the other one performs iterations in the dual space. We p...
متن کاملA Family of Preconditioned Iteratively Regularized Methods For Nonlinear Minimization
The preconditioned iteratively regularized Gauss-Newton algorithm for the minimization of general nonlinear functionals was introduced by Smirnova, Renaut and Khan (2007). In this paper, we establish theoretical convergence results for an extended stabilized family of Generalized Preconditioned Iterative methods which includes M−times iterated Tikhonov regularization with line search. Numerical...
متن کامل